Evaluating Rule-based Global XAI Malware Detection Methods

Rui Li, Olga Gadyatskaya

Discover the world at Leiden University

Expected Events per Year per Device | Global Average

Zimperium 2022 Mobile Threat Report

Number of detected mobile malicious installation packages in 2019–2022

The mobile malware threat landscape in 2022

G DATA security Mobile malware report 2022

How to spot so many malicious apps?

Malware detection with DNNs

J. Qiu et al. "A Survey of Android Malware Detection with Deep Neural Models" in ACM CSUR 2020

Explainable AI

M. Fan et al. "Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis" in IEEE TIFS 2021

• • •

Idea

Formulate three domain-specific properties for *global* XAI rule-based malware detection methods

Property	Idea	How?	
Stability	Generated explanations result do not vary between multiple runs	Compute the similarity of different run's rules (explanation result)	
Robustness	Remain unaffected when slight variations are applied	Compute the similarity of rules that generated by slight variation samples	$ \begin{bmatrix} X_{0}, X_{1}, \dots X_{2000} \\ [X_{10}, X_{11}, \dots X_{2010}] \\ \dots \\ [X_{0+(t-1)*u}, X_{1}, \dots X_{2000+(t-1)*u}] \end{bmatrix} sim_{2} $
Effectiveness	Whether the explanation results are important to the decision-making	Mutate the "and" condition rules to "or" condition rules. Compute the mutate rules' accuracy.	IF f1<1 & f2<1 then 0 else 1 \downarrow IF f1>=1 then 0 else 1 IF f2>=1 then 0 else 1

Framework

Features and Data preprocessing

- Static featues
 - sensitive permissions, activities, intents, sensitive API calls
- Dynamic features
 - system calls and Binder calls
- Data pre-processing
 - remove the features with missing values
 - transform categorical values into numeric values, etc.

Feature selection

- Boruta algorithm
 - minimizing the impact of random fluctuations and correlations during feature selection

Explainable Android Malware Detection Method

- Training black-box malware detection models
- Training agent models

Evaluation

Discover the world at Leiden University

Data:CICMalDroid 2020

Category	Description	# of samples
Adware	Adware can infect and root-infect a de-	1253
	vice, forcing it to download specific Adware	
	types and allowing attackers to steal per-	
	sonal information.	
Banking	Mobile Banking malware is a specialized	2100
	malware designed to gain access to the	
	user's online banking accounts by mim-	
	icking the original banking applications or	
	banking web interface.	
SMS malware	SMS malware exploits the SMS service as	3940
	its medium of operation to intercept SMS	
	payload for conducting attacks. They con-	
	trol attack instructions by sending mali-	
	cious SMS, intercepting SMS, and stealing	
	data.	
Riskware	Riskware refers to legitimate programs	2546
	that can cause damage if malicious users	
	exploit them. Consequently, it can turn	
	into any other form of malware such as Ad-	
	ware or Ransomware, which extends func-	
	tionalities by installing newly infected ap-	
	plications.	

Performance of black-box models

Metric	\mathbf{RF}	DNN
Accuracy	98.97%	95.54%
Precision	99.22%	96.73%
Recall	98.72%	93.94%
F-measure	98.74%	95.32%

Performance of the chosen explanation methods

Performance of black-box models

Metric	\mathbf{RF}	DNN
Accuracy	98.97%	95.54%
Precision	99.22%	96.73%
Recall	98.72%	93.94%
F-measure	98.74%	95.32%

Performance of the chosen explanation methods

	Metric	SIRUS (RF)	inTrees (RF)	deepRED (DNN)	REM-D (DNN)	ECLAIRE (DNN)
	# of rules	55	12	3	2	2
	Stability	96.15%	0%	0%	0%	0%
Rule Set \neg	Robustness	95.56%	0%	0%	0%	0%
Pulo dotector	-Effectiveness	91.65%	86.64%	-	-	-
	Accuracy	92.47%	88.19%	88.99%	86.35%	92.34%
В —	Precision	87.20%	91.70%	88.29%	87.85%	86.87%
	Recall	99.82%	87.11%	89.05%	76.08%	93.95%
	F-measure	93.09%	87.75%	88.67%	81.54%	91.16%
					•	

Performance of black-box models

Metric	RF	DNN
Accuracy	98.97%	95.54%
Precision	99.22%	96.73%
Recall	98.72%	93.94%
F-measure	98.74%	95.32%

*every run the produced rules are different *any small change will change the explanation results *still can provide valuable malware-related information but might confused

Performance of the chosen explanation methods

	Metric	SIRUS (RF)	inTrees (RF)	deepRED (DNN)	REM-D (DNN)	ECLAI a (DN	N)
	$\# ext{ of rules }$	55	12	3	2	2	
- 1 -	Stability	96.15%	0%	0%	0%	0%	
Rule Set	Robustness	95.56%	0%	0%	0%	0%	
Rule detector	-Effectiveness	91.65%	86.64%	-	-	-	
	Accuracy	92.47%	88.19%	88.99%	86.35%	92.34%	
R	Precision	87.20%	91.70%	88.29%	87.85%	86.87%	
	Recall	99.82%	87.11%	89.05%	76.08%	93.95%	
	F-measure	93.09%	87.75%	88.67%	81.54%	91.16%	

Performance of black-box models

Metric	RF	DNN
Accuracy	98.97%	95.54%
Precision	99.22%	96.73%
Recall	98.72%	93.94%
F-measure	98.74%	95.32%

Performance of the chosen explanation methods

	Metric	SIRUS (RF)	inTrees (RF)	deepRED (DNN)	REM-D (DNN)	ECLAIRE (DNN)
	# of rules	55	12	3	2	2
	Stability	96.15%	0%	0%	0%	0%
Rule Set	\frown Robustness	95.56%	0%	0%	0%	0%
Pulo dotoctor	Effectiveness	91.65%	86.64%	-	-	-
 Kule detector	Accuracy	92.47%	88.19%	88.99%	86.35%	92.34%
B	Precision	87.20%	91.70%	88.29%	87.85%	86.87%
	Recall	99.82%	87.11%	89.05%	76.08%	93.95%
	F-measure	93.09%	87.75%	88.67%	81.54%	91.16%
					•	

Conclusion

- Evaluate the quality of rule-based global XAI methods for Android malware detection
- Provide useful insights for malware analysts
- Formulate stability, robustness, and effectiveness to measure the quality of the detection methods

Future work

- Improve the proposed metrics

being computable for the vast majority of available XAI methods.

- Explore the impact of the number of rules
- Extend our metrics definition

to cover global XAI methods relying on interpretations in terms of significant features

Thank you!

Discover the world at Leiden University

Rules

ID	Rules
1	if TelephonyManager.getLine1Number < 2 &
	TelephonyManager.getSubscriberId < 1 then 0.04 else 0.87
2	if Android.permission.SEND_SMS < 1 &
	removeAccessibilityInteractionCon nection $<~3$ then 0.012
	else 0.97
3	If TelephonyManager.getCellLocation < 3 &
	TelephonyManager.getSubscriberId < 1 then 0.05 else 0.88
4	if Android.intent.action.PACKAGE_ADDED < 1 &
	getInstallerPackageName > 1 then 0.0089 else 0.76
5	if Android.permission.READ PHONE STATE < 1 & target sdk < 19
_	then 0.24 else 0.52

• Explanation of rule1

- TelephonyManager.getLine1Number : obtains a phone number
- TelephonyManager.getSubscriberId : gets device information.
- If an application tries to access the phone number at least 2 times or calls for device information, then there is a 87% possibility that it belongs to malware.