codewerk

Whitelisting for Characterizing and Monitoring Process Control Communication 17th International Conference on Network and System Security (NSS 2023) University of Kent, Canterbury, UK | August 14-16, 2023 Andreas Paul, Franka Schuster, Hartmut König

OT Networks: Characteristics and challanges

Complex and heterogeneous networks

- *Devices:* Standard IT vs. embedded systems
- Network protocols: Proprietary vs. TCP/IP
- Interconnection of different network segments and connection to public networks

• Highly sensitive environment

- Safety and Availability requirements: Passive methods only
- Secrecy: Infrastructure and attack information not publicly available

Unknown attacks

- Explicit description of attacks not useful for attack detection
- Popular approach: <u>NIDS + anomaly detection</u>

OT Networks: Characteristics and challanges

Complex and heterogeneous networks

- *Devices:* Standard IT vs. embedded systems
- Network protocols: Proprietary vs. TCP/IP
- Interconnection of different network segments and connection to public networks

• Highly sensitive environment

- Safety and Availability requirements: Passive methods only
- Secrecy: Infrastructure and attack information not publicly available

Unknown attacks

- Explicit description of attacks not useful for attack detection
- Popular approach: <u>NIDS + anomaly detection</u>

Prerequisite: Well-describable normal behaviour / static network communication

Simple approach: Communication whitelisting Measurement and analysis of communication dynamics

Automated whitelist generation and efficiency analysis

Methodology: Overview

- **Topology exploration** (network traffic preprocessing): automated generation of **communication graphs**
- Type of communication is described by edges
 → Set of all edges can already be considered as a whitelist
- Whitelist: set of rules intended to address different aspects of communication separately

Methodology: Overview

- **Topology exploration** (network traffic preprocessing): automated generation of **communication graphs**
- Type of communication is described by edges
 → Set of all edges can already be considered as a whitelist
- Whitelist: **set of** rules intended to address different aspects of communication separately

General whitelist generation

Class	Rule set	Rule elements	Example
Device-oriented	r_U	$r = (A_{src}, A_{dst})$	({10.0.0.1, 10.0.0.2, 10.0.0.3}, {10.0.0.1, 10.0.0.2, 10.0.0.3})
	$R_{K_{src}}$	$r = (a_{src}, A_{dst})$	-
	$R_{K_{dst}}$	$r = (a_{src}, A_{dst})$	({10.0.0.1}, {10.0.0.2, 10.0.0.3})
	R_T	$r = (a_{src}, a_{dst}, T)$	(10.0.0.1, 10.0.0.3, {udp})
Communication- oriented	R_P	$r = (a_{src}, a_{dst}, P)$	(10.0.0.1, 10.0.0.2, {modbus})
	R_U	$r = (a_{src}, a_{dst}, U)$	(10.0.0.1, 10.0.0.2, {read-disc-input-res, read-input-reg-res})

Methodology: Communication dynamics analysis

• Multi-step whitelist generation

- generation data is split into *n* sub-captures
- per generation step: increasing number of sub-captures used for whitelist generation
- After each generation step *i*:
 - Mismatching packet rate (MPR) m_i is determined
 - MPR decrease is determinded: $d_i = m_i m_{i+1}$ $(1 \le i < n)$

Measures for MPR evolution analysis

Measure	Meaning	Static communication is indicated by				
\bar{d}	Mean MPR decrease	Low value				
v	Variation coefficient	High value				
g	Gini coefficient (normalized)	High value				

Evaluation – Aspect 1: Communication dynamics analysis

Datasets

Dataset	Duration (hh:mm:ss)	#Packets (millions)	Packet rate (k/second)	#Devices
power1.1	02:39:34	90.53	9.46	114
power2.1	02:15:36	66.08	8.12	71
power2.2	01:25:40	6.10	1.19	66
power2.3	17:36:10	83.89	1.32	682
train1.1	01:35:44	17.00	2.96	76
train1.2	02:41:10	9.96	1.03	155
swat.a3	24:12:58	1,248.96	14.00	61
swat.a6	03:40:00	321.03	24.00	98
cicids.17	08:05:36	11.68	0.40	9,727

Communication dynamics analysis: Results (1/2)

	Network Level								
Dataset		Device-oriented			Cor	nmorier	#mism. packets		
		r _U	R _{Ksrc}	$R_{K_{dst}}$	R _T	R _P	R _U		<i>m</i> ₁₀
power1.1	superv.	$\frac{1}{1}$	$\frac{0}{10}$	$\frac{9}{54}$	$\frac{0}{151}$	$\frac{3}{151}$	$\frac{2}{151}$	336 47,604	0.000721 0.102202
power2.1	superv.	$\frac{1}{1}$	$\frac{0}{9}$	$\frac{13}{83}$	$\frac{2}{226}$	$\frac{8}{226}$	$\frac{1}{226}$	366,176 367,188	1.166194 1.169417
power2.2	control	$\frac{0}{1}$	$\frac{0}{5}$	$\frac{1}{68}$	$\frac{0}{222}$	$\frac{0}{222}$	$\frac{2}{222}$	27 31	0.000917 0.001052
power2.3	DMZ	$\frac{1}{1}$	$\frac{19}{109}$	$\frac{96}{514}$	18 3,028	31 3,028	31 3,028	9,146,857 9,187,419	19.463888 19.550202
train1.1	control	$\frac{0}{1}$	$\frac{0}{34}$	$\frac{0}{67}$	$\frac{0}{207}$	$\frac{0}{207}$	$\frac{0}{207}$	0	0.0
train1.2	control	$\frac{1}{1}$	$\frac{1}{50}$	$\frac{12}{123}$	$\frac{1}{270}$	$\frac{1}{270}$	$\frac{0}{270}$	6,252	0.126118
swat.a3	control	$\frac{1}{1}$	$\frac{0}{21}$	$\frac{8}{53}$	$\frac{1}{272}$	$\frac{0}{272}$	$\frac{6}{272}$	57 64	0.000009 0.000011
cicids.17	-	$\frac{1}{1}$	$\frac{1}{40}$	2,796 7,065	88 27,145	1,326 27,145	16 27,145	1,592,881 1,593,120	54.123183 54.131304

Communication dynamics analysis: Results (2/2)

	Network	#Triggered rules #Total rules					<i>#</i>	MPR Evolution				
Dataset Level	Level	Device-oriented		Commoriented			#mism. packets					
		r_U	R _{Ksrc}	R _{Kdst}	R _T	R _P	R _U		m_{10}	d	v	g
power1.1	superv.	$\frac{1}{1}$	$\frac{0}{10}$	$\frac{9}{54}$	$\frac{0}{151}$	$\frac{3}{151}$	$\frac{2}{151}$	336 47,604	0.000721 0.102202	0.000532 0.000534	1.697286 1.686094	0.827277 0.819754
power2.1	superv.	$\frac{1}{1}$	$\frac{0}{9}$	$\frac{13}{83}$	$\frac{2}{226}$	$\frac{8}{226}$	$\frac{1}{226}$	366,176 367,188	1.166194 1.169417	0.000731	1.388637	0.772760
power2.2	control	$\frac{0}{1}$	$\frac{0}{5}$	$\frac{1}{68}$	$\frac{0}{222}$	$\frac{0}{222}$	$\frac{2}{222}$	27 31	0.000917 0.001052	0.005911	2.747624	0.991066
power2.3	DMZ	$\frac{1}{1}$	$\frac{19}{109}$	$\frac{96}{514}$	18 3,028	31 3,028	31 3,028	9,146,857 9,187,419	19.463888 19.550202	0.569613 0.570594	2.312673 2.309209	0.946033 0.945694
train1.1	control	$\frac{0}{1}$	$\frac{0}{34}$	$\frac{0}{67}$	$\frac{0}{207}$	$\frac{0}{207}$	$\frac{0}{207}$	0	0.0	0.000631	2.649324	0.985537
train1.2	control	$\frac{1}{1}$	$\frac{1}{50}$	$\frac{12}{123}$	$\frac{1}{270}$	$\frac{1}{270}$	$\frac{0}{270}$	6,252	0.126118	0.397197	2.821426	0.998874
swat.a3	control	$\frac{1}{1}$	$\frac{0}{21}$	$\frac{8}{53}$	$\frac{1}{272}$	$\frac{0}{272}$	$\frac{6}{272}$	57 64	0.000009 0.000011	0.000177 0.008177	2.797246 2.827717	0.996615 0.999923
cicids.17	-	$\frac{1}{1}$	$\frac{1}{40}$	2,796 7,065	88 27,145	1,326 27,145	16 27,145	1,592,881 1,593,120	54.123183 54.131304	2.941505 2.940656	0.847902 0.848042	0.477112

Communication dynamics analysis: Findings

• Different OT network layers exhibit different (measurable) communication dynamics

- Clustering based on dispersion measures (v, g) allows traffic to be assigned to a network layer
- The lower the network layer, the smaller the differences in communication dynamics among different networks of the same layer

• Strong correlation between communication dynamics and whitelist completion effort

- Extreme cases: *n* rules or 1 rule is responsible for logging *n* packets
- Negative correlation about -0.81 between the proportion of triggering rules from the total amount of rules and v, g
 → The more static the communication, the lower the proportion of triggering rules

Detection of whitelist violations is dominated by device-oriented rules

- The majority of whitelist mismatching packets are logged by communication-oriented rules in case of one dataset (power1.1)
- For the other datasets, between 61% and 98% of the logged packets are detected by device-oriented rules \rightarrow Dominated by rule set $R_{K_{src}}$

Evaluation – Aspect 2: Attack detection capability

Datasets

Dataset	Duration (hh:mm:ss)	#Packets (millions)	Packet rate (k/second)	#Devices
power1.1	02:39:34	90.53	9.46	114
power2.1	02:15:36	66.08	8.12	71
power2.2	01:25:40	6.10	1.19	66
power2.3	17:36:10	83.89	1.32	682
train1.1	01:35:44	17.00	2.96	76
train1.2	02:41:10	9.96	1.03	155
swat.a3	24:12:58	1,248.96	14.00	61
swat.a6	03:40:00	321.03	24.00	98
cicids.17	08:05:36	11.68	0.40	9,727

Attack detection capability: Analysis of the swat.a6 dataset (1/3)

Total MPR

- Dataset is devided into 15 sub-captures (0-14)
- Whitelist was generated from *sub-capture 0*
- Chart: Individual analysis of the remaining sub-captures by determining the total MPR

Attack activities

- *Sub-capture 1:* Infiltrate SCADA Workstation via USB thumb drive with first malware
- Sub-captures 2-5: Data exfiltration
- *Sub-capture 10:* Infiltrate SCADA Workstation with second malware, via downloading from C2 Server
- Sub-captures 11-13: Sensor/Actuator disruption

Attack detection capability: Analysis of the swat.a6 dataset (2/3)

Communication-based MPR

- Dataset is devided into 15 sub-captures (0-14)
- Whitelist was generated from *sub-capture 0*
- Chart: Individual analysis of the remaining sub-captures by determining the communication-based MPR

Attack activities

- *Sub-capture 1:* Infiltrate SCADA Workstation via USB thumb drive with first malware
- Sub-captures 2-5: Data exfiltration
- *Sub-capture 10:* Infiltrate SCADA Workstation with second malware, via downloading from C2 Server
- Sub-captures 11-13: Sensor/Actuator disruption

Attack detection capability: Analysis of the swat.a6 dataset (3/3)

Principle of the data exfiltration attack

Messages 1-5: TCP connection establishment on Port 6556 from SCADA Workstation to C2 Server

Messages 6-8: Command transmission from C2 Server to SCADA Workstation

Messages 9-18: Process data requests from SCADA Workstation to Historian via HTTP

Message 19: Data transmission from SCADA Workstation to C2 Server

Final remarks

Communication dynamics of OT networks

- OT networks have a (measurable) static communication behaviour compared to IT networks
- Completeness of a whitelist cannot be guaranteed, even after an extended learning period
- Assessment: Manageable effort to create and maintain a complete whitelist, especially at lower OT network layers

Whitelist benefits

- Interpretability: By knowing the triggering rule, attacks can be specifically traced
- Extensibility: Automatically generated whitelists can be easily extended (manually or automatically)
- Efficiency: Simple means to limiting an attacker's options for action

• Application of the approach and future work

- Creation of a specific whitelist to support existing products (e.g. open-source solutions such as Snort)
- Provide a baseline for advanced analysis techniques

Thank you for your attention! Questions? Remarks?

Contact information: E-Mail: andreas.paul@codewerk.de