
Provably Secure Blockchain Protocols from 
Distributed Proof-of-Deep-Learning

Xiangyu Su1, Mario Larangeira1, 2, and Keisuke Tanaka1

1. Tokyo Institute of Technology, Japan
2. Input Output Global, Singapore



Outline

• Background: Blockchain Basic

• Our Contributions:

• Distributed Proof-of-Deep-Learning (D-PoDL) Scheme

• Provably Secure D-PoDL-Based Blockchain Protocols

• Summary and Future Works



Blockchain Basic: Structure

• Data: message (transaction, tx) & block
• Structure: Hash chain of blocks

block_14 block_15 block_16 block_17 block_18



Blockchain Basic: Proof-of-Work (PoW)1

• Data: message (transaction, tx) ∈ block
• Structure: Chaining blocks with hash
• PoW: Block generation with parameter T

Find nonce, s.t., hash(prevBK, nonce) ≤ T

block_14 block_15 block_16 block_17 block_18



Blockchain Basic: PoW

• Data: message (transaction, tx) ∈ block
• Structure: Chaining blocks with hash
• PoW: Block generation with parameter T

Find nonce, s.t., hash(prevBK, nonce) ≤ T

• For hash: {0,1}*->{0,1}n, PoW is expected to 

require !
!

"
 -hash evaluations

block_14 block_15 block_16 block_17 block_18



Blockchain Basic: PoW

• Data: message (transaction, tx) ∈ block
• Structure: Chaining blocks with hash
• PoW: Block generation with parameter T

=> Have ``enough (?)’’ time to send blocks



Blockchain Basic: PoW

• Data: message (transaction, tx) ∈ block
• Structure: Chaining blocks with hash
• PoW: Block generation with parameter T

=> Have ``enough (?)’’ time to send blocks
=> Forks
block_14 block_15 block_16 block_17 block_18

block’_16 block’_17



Blockchain Basic: Forks and Chain Selections

• The longest-chain-rule2 and the weight-based selection3,4

•Why is the fork guaranteed to die out?
• PoW is bounded by computing power
• The honest majority assumption (Up-to 1/2 corruption)

block_14 block_15 block_16 block_17 block_18

block’_16 block’_17



Blockchain Basic: Security2

• Persistence: For any honest chain C1 and C2 in time slot t1<t2, 
after pruning several latest blocks in C1, C1 is the prefix of C2

• Liveness: Any honest message (tx) will eventually be 
embedded in all honest users’ blockchain

C1

C2block_14 block_15 block_16 block_17 block_18

block’_16 block’_17



A Problem of the PoW

• That hash iterations seem quite wasteful
• And rather meaningless outside the PoW

• Can we replace it with something more useful?

Find nonce, s.t., hash(prevBK, nonce) ≤ T



A Problem of the PoW

• That hash iterations seem quite wasteful
• And rather meaningless outside the PoW

• Can we replace it with something more useful?
=> Proof-of-useful-work (PoUW)5,6

Find nonce, s.t., hash(prevBK, nonce) ≤ T

Given task, run Solve(task) -> proof, s.t.,
Verify(task, proof) = 1



The Useful Work

•Worst-case assumptions fine-grained complexity theory 5

• Stochastic local search algorithm6

• Deep Learning (DL) Tasks

• A model should be accurate enough to be useful

• Training a model requires sufficient computing power

=> Proof-of-Deep-Learning (PoDL)7-10



General Setup from Existing Works

• Participants: Task publishers, provers, and verifiers

• Task: (dataset 𝐷, accuracy threshold 𝑇𝑎𝑐𝑐)

• Prover Goal: Find a model that has accuracy surpassing 𝑇𝑎𝑐𝑐



A Few Drawbacks

• Strong Assumptions:
• Separation between publisher and prover7,9,10

• Strong synchronous to publish test dataset7,8

• Some Waste Computing Power:
• ``Somehow’’ trained models cannot be reused7-10*

• No Explicit Security Analysis7-10*

*10 considered pre-determined short-term targets;
*10 has proof against double spending attack.



Additional Requirements

• No-grinding attack (cherry-picking parameters)

• Pre-computation resilience

• Adjustable difficulty

• Efficient verification

• Usefulness measurement



Our Approach (Intuition)

• Setting:
• Focus on training dataset and accuracy 
• AND consider test ones to prevent overfitting (in protocol)

• Goal: Distribute task solving among provers (D-PoDL)
• Hash-training-hash structure
•Model-referencing mechanism



Scheme Overview

PreHash ℎ# ≤ 𝑇# Train PostHash

ℎ! ≤ 𝑇!

ℎ! True

False

(M,acc,#step)

ℎ"

Blockchain
Protocol

True

nonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

False

False



Scheme Overview

PreHash ℎ# ≤ 𝑇# Train PostHash

ℎ! ≤ 𝑇!

ℎ! True

False

(M,acc,#step)

ℎ"

Blockchain
Protocol

True

nonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

False

False



The PreHash Algorithm

PreHash ℎ# ≤ 𝑇#ℎ!

Falsenonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

HtoA(ℎ#)True initM=(hpp, initLP, r)
or initM=refM

• A PoW with low difficulty 𝑇!
• Hash-to-architecture mapping: HtoA(ℎ!)=(hpp, initLP, r)
• Prevent grinding attack and pre-computation attack



The PreHash Algorithm

PreHash ℎ# ≤ 𝑇#ℎ!

Falsenonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

HtoA(ℎ#)True initM=(hpp, initLP, r)
or initM=refM

• A PoW with low difficulty 𝑇!
• Hash-to-architecture mapping: HtoA(ℎ!)=(hpp, initLP, r)
• Prevent grinding attack and pre-computation attack



The PreHash Algorithm

PreHash ℎ# ≤ 𝑇#ℎ!

Falsenonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

HtoA(ℎ#)True initM=(hpp, initLP, r)
or initM=refM

• A PoW with low difficulty 𝑇!
• Hash-to-architecture mapping: HtoA(ℎ!)=(hpp, initLP, r)
• Prevent grinding attack and pre-computation attack



Model-Referencing in PreHash

• Usually, training others model is forbidden
• Achieve similar accuracy with less training iterations
=> However, pre-trained models are wasted

=> Provers should make clear references

PreHash ℎ# ≤ 𝑇#ℎ!

Falsenonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

HtoA(ℎ#)True initM=(hpp, initLP, r)
or initM=refM



Scheme Overview

PreHash ℎ# ≤ 𝑇# Train PostHash

ℎ! ≤ 𝑇!

ℎ! True

False

(M,acc,#step)

ℎ"

Blockchain
Protocol

True

nonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

False

False

(initM)



Main Training Algorithm

Train (M,acc,#step,CheckPoints)
initM

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

PreHash

• Choose training algorithm e.g., the SGD algorithm
• Result model: M=(hpp, lp*), 
• Corresponding accuracy and step number: (acc, #step)

• Checkpoints: CPs={(Mi, acci, #stepi)}



Scheme Overview

PreHash ℎ# ≤ 𝑇# Train PostHash

ℎ! ≤ 𝑇!

ℎ! True

False

(M,acc,#step)

ℎ"

Blockchain
Protocol

True

nonce

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

False

False



The PostHash Algorithm
(M,acc,#step,CPs)

PostHash

ℎ! ≤ 𝑇!

ℎ"

Blockchain
Protocol

True

(prevBK, refM,
𝐷, 𝑇#$$ , 𝑇!, 𝑇")

PreHash 
& Train

False

• One hash check

• If true, publish

• If false, return to PreHash & Train

=> More training iterations

=> Adjust overall difficulty



Model Verification

• Naïve approach: Reproduce the whole training

• Considering efficiency

=> Merkle-tree-based verification on checkpoints10,11



Transform to Blockchain Protocol

PreHash ℎ# ≤ 𝑇# Train PostHash

ℎ! ≤ 𝑇!

ℎ! True

False

(M,acc,#step)

ℎ"

Blockchain
Protocol

True

nonce

(prevBK, refM,
D, 𝑇#$$ , 𝑇!, 𝑇")

False

False



Publishers and Tasks

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

True ∧ 
ℛ(acc, 𝑇#$$)=1

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) True ∧ 
ℛ(acc, 𝑇#$$)=0

task

As refM

Selected Block
(M*)

False



Referred Models: Model Transaction (mtx)

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

task
False

Selected Block
(M*)

As refM True ∧ 
ℛ(acc, 𝑇#$$)=1

True ∧ 
ℛ(acc, 𝑇#$$)=0



Block Generation

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

task
False

As refM

Selected Block
(M*)

True ∧ 
ℛ(acc, 𝑇#$$)=1

True ∧ 
ℛ(acc, 𝑇#$$)=0



Chain Selection

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

task
False

As refM

Selected Block
(M*)

True ∧ 
ℛ(acc, 𝑇#$$)=1

True ∧ 
ℛ(acc, 𝑇#$$)=0



Concrete Chain Selection Rules

• Longest-Chain Rule2:
•ℛ(acc, 𝑇"##)=1 if acc ≥ 𝑇"##; Otherwise ℛ(acc, 𝑇"##)=0

•Miners choose the longest blockchain 

•Weight-Based Framework4:
• Assign weight to blocks according to ℛ(acc, 𝑇"##)

• Lower accuracy has lower weight

•Miners choose the heaviest blockchain



Consider Test Dataset after Chain Selection

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

task
False

As refM

Selected Block
(M*)

True ∧ 
ℛ(acc, 𝑇#$$)=0

True ∧ 
ℛ(acc, 𝑇#$$)=1



Consider Test Dataset after Chain Selection

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

next task
False

T

As refM

Selected Block
(M*)

True ∧ 
ℛ(acc, 𝑇#$$)=0

True ∧ 
ℛ(acc, 𝑇#$$)=1



Consider Test Dataset after Chain Selection

ℎ! ≤ 𝑇!

ℎ"
D-PoDL 
Scheme

Blocks {Mi}
Selected Block

(M*)

Task Publishers

task
next task

test 
acc

Chain 
Selection

mtx (M’) 

task
False

F

As refM

True ∧ 
ℛ(acc, 𝑇#$$)=0

True ∧ 
ℛ(acc, 𝑇#$$)=1



Cross Time Slot Attacks

• Refer to old/new models, and extend new/old blocks

M’ as refM

block_14 block_15 block_16 block_17 block_18

mtx (M’)

Less iteration, break the block generation rate

block_adv



Cross Time Slot Attacks

• Refer to old/new models, and extend new/old blocks

•Mitigation: Restrict step number in block_adv

• (#step_adv + #step_M’) cannot be significantly less

M’ as refM

block_14 block_15 block_16 block_17 block_18

mtx (M’) block_adv



Cross Time Slot Attacks

• Refer to old/new models, and extend new/old blocks

•Mitigation: Restrict reference

M’ as refM

block_14 block_15 block_16 block_17

block_adv mtx (M’)

Subvert blockchain history

block_18



Security for D-PoDL-Based Blockchain

• Good period: Block generation follows an expected rate

• Good period guarantees persistence and liveness2

• Probability of periods being good is 1 minus negligible



Implementation of D-PoDL Scheme

• Compare to PoW and plain 
DL tasks (MNIST dataset)

• Stable rate with enough 
randomness to prevent 
domination

*D-PoDL parameter follows (𝑇#$$, 𝑇!, 𝑇")



Summary

• A design for distributed PoUW based on DL tasks (D-PoDL)

• Blockchain with different selection rules from the D-PoDL

• Prove security for the protocol and implement the scheme



Future Works

• Checkpoints are storage-demanding
=> Potential for proof-of-space12

• Parameter adjustment is hard
=> Feedback loops

• Incentive model and rational analysis



Thank you!



References
[1] Pricing via Processing or Combatting Junk Mail. Cynthia Dwork and Moni Naor.
[2] The Bitcoin Backbone Protocol: Analysis and Applications. Juan A. Garay et al.

[3] Weight-Based Nakamoto-Style Blockchains. Simon Holmgaard Kamp et al.

[4] Bootstrapping the blockchain, with applications to consensus and fast PKI setup. Juan A. Garay et al.
[5] Proofs of Work From Worst-Case Assumptions. Marshall Ball et al.

[6] Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work, A Provably Secure Blockchain Protocol. Matthias 
Fitzi et al.

[7] Energy-recycling Blockchain with Proof-of-Deep-Learning. Changhao Chenli et al.

[8] Proof of Learning (PoLe): Empowering Machine Learning with Consensus Building on Blockchains (Demo). Yixiao
Lan et al.

[9] Exploiting Computation Power of Blockchain for Biomedical Image Segmentation. Boyang Li et al.
[10] DLchain: Blockchain with Deep Learning as Proof-of-Useful-Work. Changhao Chenli et al.

[11] An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol Based on Merkle Trees. Fabien Coelho.

[12] Proofs of Space. Stefan Dziembowski et al.


