Provably Secure Blockchain Protocols from Distributed Proof-of-Deep-Learning

Xiangyu Su¹, Mario Larangeira^{1, 2}, and Keisuke Tanaka¹

- 1. Tokyo Institute of Technology, Japan
 - 2. Input Output Global, Singapore

Tokyo Tech

Outline

- Background: Blockchain Basic
- Our Contributions:
 - Distributed Proof-of-Deep-Learning (D-PoDL) Scheme
 - Provably Secure D-PoDL-Based Blockchain Protocols
- Summary and Future Works

Blockchain Basic: Structure

- Data: message (transaction, tx) & block
- Structure: Hash chain of blocks

Blockchain Basic: Proof-of-Work (PoW)¹

- Data: message (transaction, tx) ∈ block
- Structure: Chaining blocks with hash
- PoW: Block generation with parameter T

block_14block_15block_16block_17block_18Find nonce, s.t., hash(prevBK, nonce)
$$\leq 1$$

Blockchain Basic: PoW

- Data: message (transaction, tx) ∈ block
- Structure: Chaining blocks with hash
- PoW: Block generation with parameter T

Find <u>nonce</u>, s.t., hash(prevBK, <u>nonce</u>) \leq T

• For hash: $\{0,1\}^* \rightarrow \{0,1\}^n$, PoW is expected to require $\frac{2^n}{T}$ -hash evaluations

Blockchain Basic: PoW

- Data: message (transaction, tx) ∈ block
- Structure: Chaining blocks with hash
- PoW: Block generation with parameter T
 => Have ``enough (?)'' time to send blocks

Blockchain Basic: PoW

- Data: message (transaction, tx) ∈ block
- Structure: Chaining blocks with hash
- PoW: Block generation with parameter T
 => Have ``enough (?)'' time to send blocks
 => Forks

Blockchain Basic: Forks and Chain Selections

• The longest-chain-rule² and the weight-based selection^{3,4}

- Why is the fork guaranteed to die out?
 - PoW is bounded by computing power
 - The honest majority assumption (Up-to 1/2 corruption)

Blockchain Basic: Security²

- Persistence: For any honest chain C_1 and C_2 in time slot $t_1 < t_2$, after pruning several latest blocks in C_1 , C_1 is the prefix of C_2
- Liveness: Any honest message (tx) will eventually be embedded in all honest users' blockchain

A Problem of the PoW

Find <u>nonce</u>, s.t., <u>hash(prevBK, nonce)</u> \leq T

- That hash iterations seem quite wasteful
 - And rather meaningless outside the PoW
- Can we replace it with something more useful?

A Problem of the PoW

Find nonce, s.t., hash(prevBK, nonce) \leq T

- That hash iterations seem quite wasteful
 And rather meaningless outside the PoW
- Can we replace it with something more useful?

=> Proof-of-useful-work (PoUW)^{5,6}

Given task, run Solve(task) -> proof, s.t., Verify(task, proof) = 1

The Useful Work

- Worst-case assumptions fine-grained complexity theory ⁵
- Stochastic local search algorithm⁶
- Deep Learning (DL) Tasks
 - A model should be accurate enough to be useful
 - Training a model requires sufficient computing power
 - => Proof-of-Deep-Learning (PoDL)⁷⁻¹⁰

General Setup from Existing Works

- Participants: Task publishers, provers, and verifiers
- Task: (dataset *D*, accuracy threshold *T*_{acc})
- Prover Goal: Find a model that has accuracy surpassing T_{acc}

A Few Drawbacks

- Strong Assumptions:
 - Separation between publisher and prover^{7,9,10}
 - Strong synchronous to publish test dataset^{7,8}
- Some Waste Computing Power:
 - ``Somehow'' trained models cannot be reused^{7-10*}
- No Explicit Security Analysis^{7-10*}

*10 considered pre-determined short-term targets; *10 has proof against double spending attack.

Additional Requirements

- No-grinding attack (cherry-picking parameters)
- Pre-computation resilience
- Adjustable difficulty
- Efficient verification
- Usefulness measurement

Our Approach (Intuition)

- Setting:
 - Focus on training dataset and accuracy
 - AND consider test ones to prevent overfitting (in protocol)
- Goal: Distribute task solving among provers (D-PoDL)
 - Hash-training-hash structure
 - Model-referencing mechanism

Scheme Overview

Scheme Overview

The PreHash Algorithm

- A PoW with low difficulty T_1
- Hash-to-architecture mapping: HtoA(h_1)=(hpp, initLP, r)
- Prevent grinding attack and pre-computation attack

The PreHash Algorithm

- A PoW with low difficulty *T*₁
- Hash-to-architecture mapping: HtoA(h_1)=(hpp, initLP, r)
- Prevent grinding attack and pre-computation attack

The PreHash Algorithm

- A PoW with low difficulty *T*₁
- Hash-to-architecture mapping: HtoA(h_1)=(hpp, initLP, r)
- Prevent grinding attack and pre-computation attack

Model-Referencing in PreHash

- Usually, training others model is forbidden
 - Achieve similar accuracy with less training iterations

=> However, pre-trained models are wasted

=> Provers should make clear references

Scheme Overview

Main Training Algorithm

- Choose training algorithm e.g., the SGD algorithm
- Result model: M=(hpp, lp*),
- Corresponding accuracy and step number: (acc, #step)
- Checkpoints: CPs={(M_i, acc_i, #step_i)}

Scheme Overview

The PostHash Algorithm

Model Verification

- Naïve approach: Reproduce the whole training
- Considering efficiency
- => Merkle-tree-based verification on checkpoints^{10,11}

Transform to Blockchain Protocol

Publishers and Tasks

Referred Models: Model Transaction (mtx)

Block Generation

Chain Selection

Concrete Chain Selection Rules

- Longest-Chain Rule²:
 - $\mathcal{R}(\text{acc}, T_{acc})=1$ if $\text{acc} \geq T_{acc}$; Otherwise $\mathcal{R}(\text{acc}, T_{acc})=0$
 - Miners choose the longest blockchain
- Weight-Based Framework⁴:
 - Assign weight to blocks according to $\mathcal{R}(\text{acc}, T_{acc})$
 - Lower accuracy has lower weight
 - Miners choose the heaviest blockchain

Consider Test Dataset after Chain Selection

Consider Test Dataset after Chain Selection

Consider Test Dataset after Chain Selection

Cross Time Slot Attacks

Refer to old/new models, and extend new/old blocks

Cross Time Slot Attacks

Refer to old/new models, and extend new/old blocks

- <u>Mitigation</u>: Restrict step number in block_adv
- (#step_adv + #step_M') cannot be significantly less

Cross Time Slot Attacks

Refer to old/new models, and extend new/old blocks

• <u>Mitigation</u>: Restrict reference

Security for D-PoDL-Based Blockchain

• Good period: Block generation follows an expected rate

• Good period guarantees persistence and liveness²

• Probability of periods being good is <u>1 minus negligible</u>

Implementation of D-PoDL Scheme

- Compare to PoW and plain DL tasks (MNIST dataset)
- Stable rate with enough randomness to prevent domination

*D-PoDL parameter follows (T_{acc} , T_1 , T_2)

- A design for distributed PoUW based on DL tasks (D-PoDL)
- Blockchain with different selection rules from the D-PoDL
- Prove security for the protocol and implement the scheme

Future Works

- Checkpoints are storage-demanding
- => Potential for proof-of-space¹²
- Parameter adjustment is hard
- => Feedback loops

• Incentive model and rational analysis

Thank you!

References

[1] Pricing via Processing or Combatting Junk Mail. Cynthia Dwork and Moni Naor.

- [2] The Bitcoin Backbone Protocol: Analysis and Applications. Juan A. Garay et al.
- [3] Weight-Based Nakamoto-Style Blockchains. Simon Holmgaard Kamp et al.
- [4] Bootstrapping the blockchain, with applications to consensus and fast PKI setup. Juan A. Garay et al.
- [5] Proofs of Work From Worst-Case Assumptions. Marshall Ball et al.
- [6] Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work, A Provably Secure Blockchain Protocol. Matthias Fitzi et al.
- [7] Energy-recycling Blockchain with Proof-of-Deep-Learning. Changhao Chenli et al.
- [8] Proof of Learning (PoLe): Empowering Machine Learning with Consensus Building on Blockchains (Demo). Yixiao Lan et al.
- [9] Exploiting Computation Power of Blockchain for Biomedical Image Segmentation. Boyang Li et al.
- [10] DLchain: Blockchain with Deep Learning as Proof-of-Useful-Work. Changhao Chenli et al.
- [11] An (Almost) Constant-Effort Solution-Verification Proof-of-Work Protocol Based on Merkle Trees. Fabien Coelho.
- [12] Proofs of Space. Stefan Dziembowski et al.