## **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023



## Introduction

#### mPoS Terminals

### **Payment Systems:**

- Card Present (CP)
- Card Not Present (CNP)

### **CP Acceptance Terminals:**

- Traditionally: Point of Sale (PoS)
- Recently: mobile PoS (mPoS)





Ecosystem

**Risks** 

**Related Work** 

### **mPoS Terminals**

**mobile PoS Terminals**: small, compact, low-cost, wireless, easy to configure

**Accept various payment methods**: Contact, Contactless, QR Code

**Accpet various devices**: card, mobile, watch, wearables



## Introduction

#### mPoS Terminals

### **Payment Systems:**

- Card Present (CP)
- Card Not Present (CNP)

### **CP Acceptance Terminals:**

- Traditionally: Point of Sale (PoS)
- Recently: mobile PoS (mPoS)





Ecosystem

**Risks** 

**Related Work** 

### **Some Potential Risks**

- Lock-screen bypass for mobile payments [22]PIN bypass for over the contactless limit [3-5]
- and ...
- Relay (Digital Pickpocketing) [17]









### **Some Potential Risks**

- Lock-screen bypass for mobile payments [22]PIN bypass for over the contactless limit [3-5]
- and ...
- Relay (Digital Pickpocketing) [17]











### **Some Potential Risks**

- Lock-screen bypass for mobile payments [22]PIN bypass for over the contactless limit [3-5]
- and ...
- Relay (Digital Pickpocketing) [17]







## Introduction

#### mPoS Terminals

### **Payment Systems:**

- Card Present (CP)
- Card Not Present (CNP)

### **CP Acceptance Terminals:**

- Traditionally: Point of Sale (PoS)
- Recently: mobile PoS (mPoS)





Ecosystem

**Risks** 

**Related Work** 

# **Ecosystem**

- · Crucial Component: Mobile Phone
- · Roles:
  - Communication with mPoS terminal
  - Connection to payment provider
  - Mobile Application
- Proof of concept: SumUP





# **Ecosystem**

- · Crucial Component: Mobile Phone
- · Roles:
  - Communication with mPoS terminal
  - Connection to payment provider
  - Mobile Application
- Proof of concept: SumUP



## Introduction

#### mPoS Terminals

### **Payment Systems:**

- Card Present (CP)
- Card Not Present (CNP)

### **CP Acceptance Terminals:**

- Traditionally: Point of Sale (PoS)
- Recently: mobile PoS (mPoS)





Ecosystem

**Risks** 

**Related Work** 

### **Related Work**

2014

2015

2018

**Frisby et. al.** [10]: disable the magnetic stripe reader in audio-jack magnetic stripe reader (AMSR) by arbitrary application running and obtain cryptographic keys

**MWR Lab** [15]: utilizie USB and Bluetooth interfaces, get root access, 1) execute arbitrary command 2) full control over screen ("Try again")

**Mellen et. al.** [18]: bypass the encryption by crushing the encryption chip, recording unencrypted swipes and transmit the credit card information to an external server

**Galloway and Yunusov** [11]: exploit BLE interface, send arbitrary commands ("please swipe card") and tamper with amounts (Sumup transmitted commands in plaintext!)

## Introduction

#### mPoS Terminals

### **Payment Systems:**

- Card Present (CP)
- Card Not Present (CNP)

### **CP Acceptance Terminals:**

- Traditionally: Point of Sale (PoS)
- Recently: mobile PoS (mPoS)





Ecosystem

**Risks** 

**Related Work** 

## **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023



• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 



• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 



Responder Initiator Established LL connection (Optional) Security\_Request Pairing Request Phase 1 Pairing\_Response Pairing over SMP: ► Phase 2 Legacy pairing or Secure Connections Establishment of encrypted connection with key generated in phase 2 **Key Distribution Key Distribution** Phase 3 **Key Distribution** 

**BLE Protocol Stack** 

**BLE Pairing** 

• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 

### Phase 1:

I/O: Input/Output

OOB: Out of Band

**BF**: Bonding Flag

**SC:** Secure Connection

- Pairing Request (I/O, OOB, BF, SC, Key size, ...)
  Pairing Response (I/O, OOB, BF, SC, Key size, ...)
- Phase 2:
  - Pairing mechanism:
    - Legacy Pairing (TK ==> STK ==> LTK)
    - SC: Secure Conncetion (ECDH: LTK)
  - Pairing method:
    - Just Works Unauthenticated (TK=0)
    - Out of Band (OOB)
    - Passkey (TK: 6 digit)
    - Numeric Comparison

**TK**: Temparory Key

**STK**: Short Term Key

LTK: Long Term Key

**ECDH**: Elliptic Curve Diffie-Hellman

• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 

# **Eavesdropping**

- Threat Model: malicious merchant or eavesdropper
- Tools:

  - HCI Snoop Log BLE Over-the-air Sniffer



• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 

## **Extract Cryptographic Keys**



Request:Keyboard&Display ~
 Response: No I/O

Pairing: LE Legacy

 Key Generation: Just Works (Unauthenticated)

• Temparory Key (TK): **Zero** 

• Extract **LTK**!

• Crackle: "Decrypt with LTK"

• Input: encrypted file + LTK

• Output: decrypted file





Request:Key
 Response: N

Pairing

Key Ge(Unau)

Tempa

| Field                      | Pairing | Pairing Request  | Pairing  | Pairing Response |
|----------------------------|---------|------------------|----------|------------------|
|                            | Request | Meaning          | Response | Meaning          |
|                            | Value   |                  | Value    |                  |
| Code                       | 0x01    | Pairing Request  | 0x02     | Pairing Response |
| I/O                        | 0x04    | Keyboard/Display | 0x03     | No I/O           |
| OOB                        | 0x00    | NOT Present      | 0x00     | NOT Present      |
| Authentication Request     |         |                  |          |                  |
| Bonding                    | 0x1     | Bonding          | 0x1      | Bonding          |
| MITM                       | 1       | True             | 0        | False            |
| SC                         | 1       | True             | 0        | False            |
| KP                         | 0       | False            | 0        | False            |
| Reserved                   | 0x0     | -                | 0x0      | -                |
| Max Enc.                   | 16      | Max Enc. Size    | 16       | Max Enc. Size    |
| Initiator Key Distribution |         |                  |          |                  |
| LTK                        | 1       | True             | 1        | True             |
| IRK                        | 1       | True             | 1        | True             |
| CSRK                       | 1       | True             | 0        | False            |
| Link Key                   | 1       | True             | 0        | False            |
| Reserved                   | 0x0     | -                | 0x0      | -                |
| Responder Key Distribution |         |                  |          |                  |
| LTK                        | 1       | True             | 1        | True             |
| IRK                        | 1       | True             | 1        | True             |
| CSRK                       | 1       | True             | 0        | False            |
| Link Key                   | 1       | True             | 0        | False            |
| Reserved                   | 0x0     | -                | 0x0      | _                |

• C

## **Extract Cryptographic Keys**



Request:Keyboard&Display ~
 Response: No I/O

Pairing: LE Legacy

 Key Generation: Just Works (Unauthenticated)

• Temparory Key (TK): **Zero** 

• Extract **LTK**!

• Crackle: "Decrypt with LTK"

• Input: encrypted file + LTK

• Output: decrypted file



### iZettle:

- Secure Conncetion
- ✓ Numeric comparison

# **Not Common Practice!**



10

## **Extract Cryptographic Keys**



Request:Keyboard&Display ~
 Response: No I/O

Pairing: LE Legacy

 Key Generation: Just Works (Unauthenticated)

• Temparory Key (TK): **Zero** 

• Extract **LTK**!

• Crackle: "Decrypt with LTK"

• Input: encrypted file + LTK

• Output: decrypted file



• Communication: BLE

• Protocol **Stack**: Controller, (HCI), Host, Application

Our interest: Security Manager Protocol (SMP)

Contains pairing

Generates and distributes keys

• Pairing Phases:

• Phase 1: exchange pairing feature

• Phase 2: determines pairing mechanism

• Phase 3: distributes keys







BLE Pairing

Pairing

**Eavesdropping** 

## **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023



# **Network Security**

- Communication: **HTTPS** (uses TLS)
- Threat model: man-in-the-middle (MITM)
- Proxy server: **mitmproxy** 
  - intercept and decrypt traffic



HTTPS Interception



### **Network Security**

- Communication: **HTTPS** (uses TLS)
- Threat model: man-in-the-middle (MITM)
- Proxy server: **mitmproxy** 
  - intercept and decrypt traffic



HTTPS Interception

**Attack** 

### **HTTPS Interception**

- 1. Set up manual **proxy** configuration on the phone
- 2. Install mitmproxy **Certificate Authority (CA)** on the phone
- 3. Bypass **Certificate Pinning** (allowing user-added certificate) by modifying the app
- 4. The modified app now **trusts** the mitmproxy certificate!



# e modified app now **trusts** the mitmprox ficate!



### **HTTPS Interception**

- 1. Set up manual **proxy** configuration on the phone
- 2. Install mitmproxy **Certificate Authority (CA)** on the phone
- 3. Bypass **Certificate Pinning** (allowing user-added certificate) by modifying the app
- 4. The modified app now **trusts** the mitmproxy certificate!



### **Network Security**

- Communication: **HTTPS** (uses TLS)
- Threat model: man-in-the-middle (MITM)
- Proxy server: **mitmproxy** 
  - intercept and decrypt traffic



HTTPS Interception

**Attack** 

### **Tampering Attack**

- Tampering with the (protected) messages
- Command "PINPLUS SHOW DEFAULT MESSAGE" coded in plain text Hexadecimal
- Inserting arbitrary commands to force the terminal to change the displayed message ("Declined!")
- Challenge: Protected messages are rejected
- **Solution**: Send "leave\_protected\_session" command first!









### **Tampering Attack**

- Tampering with the (protected) messages
- Command "PINPLUS SHOW DEFAULT MESSAGE" coded in plain text Hexadecimal
- Inserting arbitrary commands to force the terminal to change the displayed message ("Declined!")
- Challenge: Protected messages are rejected
- **Solution**: Send "leave\_protected\_session" command first!







# Not a barbie girl, but stuck in the barbie world!





### **Tampering Attack**

- Tampering with the (protected) messages
- Command "PINPLUS SHOW DEFAULT MESSAGE" coded in plain text Hexadecimal
- Inserting arbitrary commands to force the terminal to change the displayed message ("Declined!")
- Challenge: Protected messages are rejected
- **Solution**: Send "leave\_protected\_session" command first!





### **Network Security**

- Communication: **HTTPS** (uses TLS)
- Threat model: man-in-the-middle (MITM)
- Proxy server: **mitmproxy** 
  - intercept and decrypt traffic



HTTPS Interception

**Attack** 

### **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023



### **Software Security**

Reverse Engineering

- Mobile application: manages the terminal
- Reverse-engineering to identify vulnerabilities in the code
- proof of concept: Android phone, APK



**Attacks** 



### **Software Security**

Reverse Engineering

- Mobile application: manages the terminal
- Reverse-engineering to identify vulnerabilities in the code
- proof of concept: Android phone, APK



**Attacks** 

### **Reverse Engineering Steps**

- 1. Download genuine APK
- 2. Decompile the APK apktool: Smali code (main)
  Java decompiler: Java code (complementary)
- 3. Make Modifications
- 4. Recompile the APK (e,g, apk-mitm)
- 5. Sign the APK (e,g, uber-apk-signer)
- 6. Re-install compromised App!



### **Software Security**

Reverse Engineering

- Mobile application: manages the terminal
- Reverse-engineering to identify vulnerabilities in the code
- proof of concept: Android phone, APK



**Attacks** 

### **Attacks**

#### 1. Bypass Certificate Pinning

- Replace the application's network security config to allow user-added certs.
- Modify the code to disable cert. pinning implementation

#### 2. Bypass Protected Messages

• Leave Protected Session

#### 3. Disable Security Features: Beep Sound

- Find "AudioManager" Class ==>
   "PlaySoundEffect" method
- Modify or remove
- Sounds are muted!

4. ...

### **Software Security**

Reverse Engineering

- Mobile application: manages the terminal
- Reverse-engineering to identify vulnerabilities in the code
- proof of concept: Android phone, APK



**Attacks** 

### **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023



- mPoS terminals can be vulnerable in various ways
- The involvement of merchant's phone can make it worse!

Thanks!

Potential Solutions

### **Potential Solutions**

- Secure Pairing on BLE
- Code Obscuring
- Anti-tampering
- Abuse Detection
- Requires Further Research!

- mPoS terminals can be vulnerable in various ways
- The involvement of merchant's phone can make it worse!

Thanks!

Potential Solutions

### What's next?

### Tap-to-phone!

- Potential Solution
- Susceptible to risks
- Requires furthur research



- mPoS terminals can be vulnerable in various ways
- The involvement of merchant's phone can make it worse!

Thanks!

Potential Solutions

- mPoS terminals can be vulnerable in various ways
- The involvement of merchant's phone can make it worse!

Thanks!

Potential Solutions



- Mahshid.mehr-nezhad@warwick.ac.uk
  - X @MahshiidMehr
    - in @mahshidmehr

- mPoS terminals can be vulnerable in various ways
- The involvement of merchant's phone can make it worse!

Thanks!

Potential Solutions

### **Security Analysis of Mobile Point-of-Sale Terminals**

WARWICK
THE UNIVERSITY OF WARWICK

Mahshid Mehr Nezhad, Elliot Laidlaw, Feng Hao University of Warwick, UK

Network and System Security 2023

