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We formalize a data reconstruction attack theory against Principal
Component Analysis (PCA) by extending a former work about Membership
Inference Attack (MIA) against PCA.

Our Work
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Given a trained ML model and some data point, decide whether this point
was part of the model’s training sample or not.

Aim of the Membership Inference Attack (MIA)
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The goal of the adversary in a reconstruction attack is to extract the data
used in the training or inferences of a machine learning model.

Data Reconstruction attacks
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• MIA against PCA [2] was studied for the first time
• The attacker intercepts some of the principal components and infers
whether a particular sample participated in the computation of
principal components.

• The theory is that the samples belonging to the training set will incur
lower reconstruction error in comparison with the samples not
belonging to the training set.

MIA against Principal Component Analysis(PCA)
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• Suppose 𝑋 is an original data matrix of size 𝑛 × 𝑝 after subtracting the
mean. Let 𝑉 be the 𝑝 × 𝑘 matrix of some 𝑘 eigenvectors to reduce the
dimension.

• The matrix of PCA projection scores (𝑍) with the dimension 𝑛 × 𝑘 is
𝑍 = 𝑋𝑉 . To reconstruct all the original variables from a subset of
principal components/eigenvectors, we can map it back to 𝑝

dimensions with 𝑉𝑇 .
• Reconstructed matrix, 𝑋 = 𝑍𝑉𝑇 . Since we have a projection scores
matrix, 𝑍 = 𝑋𝑉 , we obtain 𝑋 = 𝑋𝑉𝑉𝑇 .

• We do not have access to the original data 𝑋; we assume that the
attacker has knowledge about the distribution of 𝑋. Therefore, the
attacker can synthesize the data 𝑋𝑠𝑦𝑛 with a similar distribution as 𝑋

and reconstruct the original data using 𝑋 = 𝑍𝑉 = 𝑋𝑠𝑦𝑛𝑉
𝑇𝑉 .

Data Reconstruction Attack
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• We use a Conditional Tabular Generative Adversarial Network (CTGAN)
to generate the synthetic data

• To show experimental results, we generate the synthetic data using
different percentages of records from the original data, including {10%,
30%, 50%, 70%, 100%}

Generation of Synthetic Data
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Data reconstruction attack against Principal Component Analysis

Attack Methodology
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Dataset Number of
Samples

Number of At-
tributes

Heart-scale 270 13
Mushrooms 8124 112
a9a 32561 123

Description of datasets
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• No Protection Mechanism: the data curator uses no protection
mechanism at all

• Differentially Private Principal Component Analysis (DPPCA): the data
curator applies DPPCA, which involves perturbing the covariance
matrix

Compared Methodologies
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Definition
Suppose 𝑆 is the synthetic data obtained after the alignment, and 𝑂 is the
original data. Let 𝑛 be the total number of samples in the original and the
synthetic data, 𝑂 𝑗 be the value of the sensitive attribute from the original
data, which the attacker aims to infer, and 𝑆 𝑗 is the inferred attribute in the
synthetic data corresponding to the sensitive attribute 𝑂 𝑗 . Let 𝛿 be the
deviation between the original and the synthetic attribute that can be
tolerated to measure the level of inference for a record. The lower the 𝛿, the
closer the values of 𝑆 𝑗 and 𝑂 𝑗 must be to each other. The Reconstruction
Accuracy, 𝐼.𝐴., for the continuous attributes, is defined as follows:

𝑅.𝐴. =

#
{
𝑆 𝑗 : |

𝑂 𝑗−𝑆 𝑗

𝑆 𝑗
| ≤ 𝛿, 𝑗 = 1 . . . 𝑛

}
𝑛

(1)

where #means count. I.A. is the percentage of inferred entries for which
the relative errors are within 𝛿.
For the categorical data, the above formula is more strict (as we are
counting only the exact matches) and changes to

𝑅.𝐴. =

#
{
𝑆 𝑗 : 𝑂 𝑗 == 𝑆 𝑗 , 𝑗 = 1 . . . 𝑛

}
𝑛

(2)

Reconstruction Accuracy (R.A.)
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• It is noted that there is not much difference in the R.A. when the
CTGAN uses less percentage (e.g., 10%) of samples from the original
data compared to using all the samples from the original data for
generating the synthetic data.
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R.A. on the heart-scale data (CTGAN) I
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R.A. on the heart-scale data (CTGAN) III
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• When no protection mechanism is used, we show that the R.A.
increases in comparison with the case when DPPCA is used, and when
the principal components are computed on the synthetic dataset.
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• Lesser the value of 𝜖 (higher privacy), the shallower the graph for
reconstruction accuracy (less reconstruction).
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• We demonstrated a data reconstruction attack theory against Principal
Component Analysis.

• We compared two defense strategies, including DPPCA, and synthetic
data against the proposed attack.

Summary
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Thank You Very Much
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