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Introduction

▶ Huge amount of data is generated every day in networked systems.
▶ Nevertheless, in reality, nearly all networks undergo changes, with nodes or edges

arriving or going away as the system develops.
▶ Therefore, static graph networks are not adequate to model these kinds of network

structures.
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Dynamic Graph

▶ Data on dynamic networks here is a collection of successively obtained, equally spaced
snapshots of the network topology

▶ These snapshots are a set of different networks defined on the same set of nodes.
▶ A dynamic network graph model consists of an initial state G0 and states Gi , for

i = 1, . . . T , defined by:
Gi = A1−α,1−β(Gi−1)

We will denote it as: G(G0, T , α, β).
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Challenges of Privacy in Dynamic Graph

▶ The adversaries can use their information about the structural graph to infer private
information from the graph.

▶ Proper privacy models have been developed for static graphs following k-anonymity
and differential privacy.
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Motivation

▶ The extension of the definition of local differential privacy for edges to dynamic graphs;
▶ The privacy mechanisms for providing graphs compliant with edge-local differential

privacy for dynamic graphs. This is achieved by applying the noise-graph mechanism;
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Noise Graph Mechanism

For any graph G with n nodes, and two probabilities p0 and p1 We define the following
noise-graph mechanism:

Ap0,p1 (G) = G ⊕ G0 ⊕ G1,

Such that:

G0 = G′ \ G for G′ ∈ G(n, 1− p0)

G1 = G′′ ∩ G for G′′ ∈ G(n, 1− p1).
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Stochastic matrix associated to the noise graph

The probabilities of randomization of an edge or a non-edge in a graph G after applying the
noise-graph mechanism Ap0,p1 are represented by the following stochastic matrix:

P = P(Ap0,p1 ) =

(
p0 1− p0

1− p1 p1

)
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Dynamic-network-graph-model

The dynamic network graph model consists of an initial state G0 and states Gt , for
t = 1, . . . T , defined by:

Gt = A1−α,1−β(Gt−1)

We will denote it as: G(G0, T , α, β).
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Local differential privacy

A randomized algorithm π, satisfies ε-local differential privacy if for all inputs x, x′ and all
outputs y ∈ Range(π):

P(π(x) = y) ≤ eεP(π(x′) = y) (1)
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Edge Differential Privacy

▶ A randomized algorithmA satisfies ε-edge local differential privacy if for all pairs of
nodes u, v, all times stamps t and edge values i, j, k:

Pr[A(u, v, t; i) = k] ≤ eεPr[A(u, v, t; j) = k]

we say thatA is ε-edge locally differentially private (ε-eLDP).
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Algorithm 1: Dynamic Network mechanism

Let G = G0, . . .GT be a dynamic graph. We define the dynamic network mechanism as:

Dp0,p1 (G) = G(g0, T , 1− p0, 1− p1),

where, g0 = Ap0,p1 (G0). That is, the protected dynamic graph g0, g1, . . . , gT corresponds to

gi = Ai+1
p0,p1 (G0).
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Algorithm 2: Parallel Protection Mechanism

Let G = G0,G1, . . . ,GT be a dynamic graph. LetAp0,p1 denote the noise-graph mechanism.
Then, we define the parallel protection of the dynamic graph with parameters p0 and p1 as the
protection process that provides G̃ = G̃0, G̃1, . . . , G̃T with G̃i = Ap0,p1 (Gi) for i = 0, . . . , T .
We denote the parallel protection of a dynamic graph G with parameters p0 and p1 as
A||

p0,p1 (G).
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Experiment and Results I
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Experiment and Results (NMI vs Month for CAIDA-AS
data)
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Experiment and Results III
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Experiment and Results IV
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Experiment and Results V
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Thank You‼
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