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Motivation
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Motivation

● Data is everywhere!

● Machine learning algorithms demand data.

● Privacy of the sensitive information!

○ Privacy preserving model training and testing

○ How about the privacy preserving model evaluation such as the area under curve?
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ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework[1]

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).



 |  8Medical Data Privacy Preserving Machine Leaarning Ünal et al. | NSS-SocialSec 2023 

ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework[1]

Proxies

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).



 |  9Medical Data Privacy Preserving Machine Leaarning Ünal et al. | NSS-SocialSec 2023 

ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework[1]

Proxies

Helper

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).



 |  10Medical Data Privacy Preserving Machine Leaarning Ünal et al. | NSS-SocialSec 2023 

ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework[1]

Proxies

Helper

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).



 |  11Medical Data Privacy Preserving Machine Leaarning Ünal et al. | NSS-SocialSec 2023 

ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework[1]

Proxies

Helper

Data
Sources

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).
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ppAURORA
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ppAURORA

● Privacy preserving model evaluation based on 3-party computation (MPC) 
framework

●  Area under the curve (AUC) as the model evaluation metric

○ Summarizes the plot-based model evaluation metrics by measuring the area 

between the curve and the x-axis

○ Receiver operating characteristic (ROC) curve

○ Precision-Recall (PR) Curve

● Exact AUC computation via the MPC building blocks

○ Especially for the small size test set
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Area Under the ROC Curve (AUROC)

● ppAURORA for the area under the ROC curve (AUROC)
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Area Under the ROC Curve (AUROC)

● ppAURORA for the area under the ROC curve (AUROC)

● Two versions
○ No tie condition in the prediction scores (AUROC no-tie)
○ With tie condition in the prediction scores (AUROC with-tie)
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Area Under the ROC Curve (AUROC)

● For AUROC no-tie # true positives # false positives

# true samples # false samples

all samples
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Area Under the ROC Curve (AUROC)

● For AUROC no-tie # true positives # false positives

# true samples # false samples

all samples
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Why AUROC with-tie?
Prediction Score Label
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Area Under the ROC Curve (AUROC)
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Area Under the ROC Curve (AUROC)

● For AUROC no-tie

● For AUROC with-tie
threshold samples

determined via secure tie detection

# true positives # false positives

# true samples # false samples

all samples
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Area Under the Precision-Recall Curve (AUPR)

● ppAURORA for the area under the PR curve (AUPR)
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● Similar to AUROC with-tie
○ Precision and recall can change at the same time.
○ No common denominator though
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Area Under the Precision-Recall Curve (AUPR)

● ppAURORA for the area under the PR curve (AUPR)

● Similar to AUROC with-tie
○ Precision and recall can change at the same time.
○ No common denominator though

Precision Recall MUL
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Sorting

● The first task to perform before both AUROC and AUPR
○ Individually sorted lists from multiple data sources

● Merging individually sorted lists using the MPC building blocks
○ Parametric sorting algorithm adjusting the privacy-performance trade-off

● Skipping due to the time limitation
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Results

● Correctness analysis on
○ Acute Myeloid Leukemia dataset
○ UCI Heart Disease dataset
○ Same as the result of the plaintext analysis

● Scalability analysis on
○ Synthetic dataset
○ Various scenarios
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Results: Scalability to the Number of Samples
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Results: Scalability to the Number of Parties
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Results: Scalability to the Delta
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Summary

● Not only the training and testing privately but also evaluation privately

● ppAURORA based on 3-party computation for AUC of ROC and PR curves

● Exact AUC result

● Linearly scalable to the number of samples and the parties

● Logarithmic decrease in the execution time parallel to the increase in delta
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Thanks for listening!

Any Questions?

The icons in this presentation are from https://www.flaticon.com/


