

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Medical Data Privacy Preserving Machine Learning

ppAURORA: Privacy Preserving Area Under Receiver Operating Characteristic and Precision-Recall Curves

Ali Burak Ünal, Nico Pfeifer, Mete Akgün

• Data is everywhere!

- Data is everywhere!
- Machine learning algorithms demand data.

- Data is everywhere!
- Machine learning algorithms demand data.
- Privacy of the sensitive information!

- Data is everywhere!
- Machine learning algorithms demand data.
- Privacy of the sensitive information!
 - Privacy preserving model training and testing

- Data is everywhere!
- Machine learning algorithms demand data.
- Privacy of the sensitive information!
 - Privacy preserving model training and testing
 - How about the privacy preserving model evaluation such as the area under curve?

 Privacy preserving model evaluation based on 3-party computation (MPC) framework^[1]

[1] Ünal, Ali Burak, Nico Pfeifer, and Mete Akgün. "CECILIA: Comprehensive secure machine learning framework." arXiv preprint arXiv:2202.03023 (2022).

 Privacy preserving model evaluation based on 3-party computation (MPC) framework^[1]

 Privacy preserving model evaluation based on 3-party computation (MPC) framework^[1]

 Privacy preserving model evaluation based on 3-party computation (MPC) framework^[1]

Privacy preserving model evaluation based on 3-party computation (MPC) framework^[1] Data Sources Proxies Helper

- Privacy preserving model evaluation based on 3-party computation (MPC) framework
- Area under the curve (AUC) as the model evaluation metric
 - Summarizes the plot-based model evaluation metrics by measuring the area between the curve and the x-axis
 - Receiver operating characteristic (ROC) curve
 - Precision-Recall (PR) Curve

- Privacy preserving model evaluation based on 3-party computation (MPC) framework
- Area under the curve (AUC) as the model evaluation metric
 - Summarizes the plot-based model evaluation metrics by measuring the area between the curve and the x-axis
 - Receiver operating characteristic (ROC) curve
 - Precision-Recall (PR) Curve
- Exact AUC computation via the MPC building blocks
 - Especially for the small size test set

• ppAURORA for the area under the ROC curve (AUROC)

- ppAURORA for the area under the ROC curve (AUROC)
- Two versions
 - No tie condition in the prediction scores (AUROC no-tie)
 - With tie condition in the prediction scores (AUROC with-tie)

• For AUROC no-tie

$$AUROC = \frac{\sum_{i=1}^{M} \left(TP[i] \cdot (FP[i] - FP[i-1]) \right)}{T \cdot F}$$

Why AUROC with-tie?

Why AUROC with-tie?

TPR	FPR	Prediction Score	Label
0.2	0	0.5	1
0.4	0	0.5	1
0.6	0	0.5	1
0.8	0	0.5	1
1	0	0.5	1
1	0.2	0.5	0
1	0.4	0.5	0
1	0.6	0.5	0
1	0.8	0.5	0
1	1	0.5	0

Why AUROC with-tie?

TPR	FPR	Prediction Score	Label
0.2	0	0.5	1
0.4	0	0.5	1
0.6	0	0.5	1
0.8	0	0.5	1
1	0	0.5	1
1	0.2	0.5	0
1	0.4	0.5	0
1	0.6	0.5	0
1	0.8	0.5	0
1	1	0.5	0

• For AUROC with-tie

$$AUROC = \sum_{i=1}^{\Theta} \left(\frac{(TP[i] + TP[i-1]) \cdot (FP[i] - FP[i-1])}{2 \cdot T \cdot F} \right)$$

• ppAURORA for the area under the PR curve (AUPR)

- ppAURORA for the area under the PR curve (AUPR)
- Similar to AUROC with-tie
 - Precision and recall can change at the same time.
 - No common denominator though

- ppAURORA for the area under the PR curve (AUPR)
- Similar to AUROC with-tie
 - Precision and recall can change at the same time.
 - No common denominator though

$$AUROC = \sum_{i=1}^{\Theta} \left(PRE[i-1] \cdot (REC[i] - REC[i-1]) + \frac{(PRE[i] - PRE[i-1]) \cdot (REC[i] - REC[i-1])}{2} \right)$$

$$Precision \qquad \text{Recall}$$

- ppAURORA for the area under the PR curve (AUPR)
- Similar to AUROC with-tie
 - Precision and recall can change at the same time.
 - No common denominator though

Sorting

- The first task to perform before both AUROC and AUPR
 - Individually sorted lists from multiple data sources
- Merging individually sorted lists using the MPC building blocks
 - Parametric sorting algorithm adjusting the privacy-performance trade-off
- Skipping due to the time limitation

Results

- Correctness analysis on
 - Acute Myeloid Leukemia dataset
 - UCI Heart Disease dataset
 - Same as the result of the plaintext analysis
- Scalability analysis on
 - Synthetic dataset
 - Various scenarios

æ

Results: Scalability to the Number of Samples

Results: Scalability to the Number of Parties

Results: Scalability to the Delta

Summary

- Not only the training and testing privately but also evaluation privately
- ppAURORA based on 3-party computation for AUC of ROC and PR curves
- Exact AUC result
- Linearly scalable to the number of samples and the parties
- Logarithmic decrease in the execution time parallel to the increase in delta

Thanks for listening!

Any Questions?

The icons in this presentation are from https://www.flaticon.com/

